Designer's casebook ## Adjustable discriminator cleans up signal noise by Dennis D. Barber University of Houston, Houston, Texas Telemetry signals or other logic signals often pick up a lot of extra noise during transmission. But they can easily be cleaned up at the receiving end by a discriminator circuit having adjustable hysteresis. The voltage discriminator shown in the figure can clean up signals containing as much as 70% noise without the need to alter the signal amplitude or dc level. The input to the amplifier that serves as the voltage-discriminator (amplifier A₄) is kept constant at 5 volts peak-to-peak. But the signal to be conditioned, the one at the input to the circuit, does not have to be critically maintained or its level known precisely. Amplifier A₁ is gain-controlled, with field-effect tran- sistor Q_1 acting as the gain-control element. This FET, which functions as a voltage-variable resistor, is controlled by amplifiers A_2 and A_3 . Amplifier A_4 is the voltage-discriminator stage that provides the adjustable hysteresis through its variable regenerative feedback. Before the capacitively coupled input signal goes positive or negative, the output of amplifier A_1 may be treated as if it were at ground. The gain of amplifier A_1 is then at its maximum since the inputs to amplifiers A_2 and A_3 are below (in absolute magnitude) their respective reference voltages. The output of each amplifier is now positive, and diodes D_1 and D_2 are back-biased, which allows transistor Q_1 to turn fully on. If the input signal goes positive, the output of A_1 will move towards the positive power-supply level. When it reaches the reference voltage of A_2 , the output of A_2 quickly swings negative, turning transistor Q_1 partially off and thus lowering the gain of A_1 . The output of A_1 is held at the positive reference voltage until this reference level is greater than the input voltage multiplied by the maximum gain of A_1 . At this point, the input voltage is only a few millivolts above ground. **Pulling the data out of the noise.** Adjustable-hysteresis voltage discriminator makes significant improvement in signal-to-noise ratios, as can be seen from the scope traces. The level of regenerative feedback of amplifier A_4 , the voltage-discriminator stage, is adjusted to provide optimum noise immunity. The gain of amplifier A_1 is controlled by transistor Q_1 , which is operated as a voltage-variable resistor. response time of the comparator is less than 10 milliseconds and is free of litter. The circuit may be set up for any $V_{\rm IN(MAX)}$ from 10 to 100 volts by adjusting resistor R_1 so that the maximum voltage at point X is 10 v. Since R_2 is 10 kilohms, the value of R_1 in kilohms is $(V_{\rm IN(MAX)}-10)$. The value of R_3 in the squarer circuit is made 10 $V_{\rm IN(MAX)}^{1/2}$ kilohms. | Typical values are: | R, | \mathbf{R}_3 | |---------------------|------|----------------| | (volts) | (kΩ) | $(k\Omega)$ | | 10 | 0 | 31.6 | | 50 | 40 | 71 | | 100 | 90 | 100 | Potentiometer P₁ is adjusted to make the voltage—at point Y exactly equal to V_{IN(MAX)}^{1/2}. Finally, resistor R₆ is trimmed to provide the best square-root tracking, P₁ being readjusted as R₈ is varied. to the resistance of the combination of R_3 in parallel with R_4 and P_1 . Since $(R_4 + P_1)$ is much smaller than R_3 on any range, however, R_{15} may be made 6.8 k Ω as a good compromise. Diode D_1 should be chosen to have a resistance of about 160 Ω for an applied voltage of 0.8 To minimize offset error, resistor R₁₅ should be equal v. The type 741 op amps use a ±15-v power supply, decoupled with 0.1-microfarad ceramic capacitors at the voltage-input points.